Refinement

Refinement on F

$$
(\Delta / \sigma)_{\max }<0.001
$$

$R=0.031$
$w R=0.038$
$S=0.99$
2442 reflections
226 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F^{2}\right)+(0.020 F)^{2}\right.$
$+0.075]$
Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{Zn} \cdots \mathrm{Cu}$	3.0757 (6)	$\mathrm{Cu}-\mathrm{N} 2$	1.971 (3)
$\mathrm{Zn}-\mathrm{Cll}$	2.208 (1)	$\mathrm{O} 1-\mathrm{Cl}$	1.339 (5)
$\mathrm{Zn}-\mathrm{Cl} 2$	2.208 (1)	O2-C17	1.333 (5)
$\mathrm{Zn}-\mathrm{Ol}$	2.004 (3)	N - C 7	1.286 (5)
$\mathrm{Zn}-\mathrm{O} 2$	2.010 (3)	$\mathrm{N} 1-\mathrm{C} 8$	1.477 (5)
$\mathrm{Cu}-\mathrm{OI}$	1.942 (3)	$\mathrm{N} 2-\mathrm{Cl} 10$	1.497 (5)
$\mathrm{Cu}-\mathrm{O} 2$	1.938 (3)	$\mathrm{N} 2-\mathrm{C} 11$	1.282 (6)
$\mathrm{Cu}-\mathrm{Ni}$	1.960 (3)		
$\mathrm{Cll}-\mathrm{Zn}-\mathrm{Cl} 2$	116.46 (5)	$\mathrm{Ol}-\mathrm{Cu}-\mathrm{N}$	91.2 (1)
$\mathrm{ClI}-\mathrm{Zn}-\mathrm{Ol}$	108.6 (1)	$\mathrm{Ol}-\mathrm{Cu}-\mathrm{N} 2$	169.9 (1)
$\mathrm{Cl}-\mathrm{Zn}-\mathrm{O} 2$	112.6 (1)	$\mathrm{O} 2-\mathrm{Cu}-\mathrm{N} 1$	168.3 (1)
$\mathrm{Cl} 2-\mathrm{Zn}-\mathrm{Ol}$	119.54 (9)	$\mathrm{O} 2-\mathrm{Cu}-\mathrm{N} 2$	92.2 (1)
$\mathrm{C} 22-\mathrm{Zn}-\mathrm{O} 2$	117.82 (9)	$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 2$	98.7 (1)
$\mathrm{O}-\mathrm{Zn}-\mathrm{O}_{2}$	75.0 (1)	$\mathrm{Zn}-\mathrm{Ol}-\mathrm{Cu}$	102.4 (1)
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 2$	78.1 (1)	$\mathrm{Zn}-\mathrm{O} 2-\mathrm{Cu}$	102.3 (1)

Ring H atoms were placed geometrically $0.95 \AA$ from their parent atoms, while the other H atoms were taken from a difference map. For all H atoms, a riding model was used with $U_{\text {iso }}(\mathrm{H})=1.3 U_{\text {eq }}(\mathrm{C})$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1993). Cell refinement: CAD-4 EXPRESS. Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: MolEN. Program(s) used to refine structure: MolEN. Molecular graphics: ORTEP-3 (Farrugia, 1997). Software used to prepare material for publication: MolEN.

The authors wish to acknowledge the purchase of the CAD-4 diffractometer under Grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1278). Services for accessing these data are described at the back of the journal.

References

Aminabhavi, T. M., Biradar, N. S. \& Divakar, M. C. (1986). Indian J. Chem. Ser. A, 25, 283-284.

Atakol, O., Ercan, F.. Ülkü, D. \& Yılmaz, N. (1997). Anal. Sci. 13, 1051-1052.
Atakol, O., Tatar, L., Akay, A. \& Ülkü, D. (1999). Anal. Sci. 15, 199-200.
Bertini, I., Gray, H. B., Lippard, S. J. \& Valentine, J. S. (1994). Bioinorganic Chemistry, pp. 37-102. Mill Valley: University Science Books.
Butcher, R. J. \& Sinn, E. (1976). Inorg. Chem. 15, 1604-1608.
Enraf-Nonius (1993). CAD-4 EXPRESS. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Greenwood, N. N. \& Earnshaw, A. (1994). Chemistry of the Elements, pp. 1364-1422. Oxford: Pergamon Press.

Kato, M., Jonassen, H. B. \& Fanning, J. C. (1964). Chem. Rev. pp. 99-128.
Kato, M. \& Muto, Y. (1988). Coord. Chem. Rev. 92, 45-83.
Lippard, S. J. \& Berg, J. M. (1994). Principles of Bioinorganic Chemistry, pp. 178-184. Mill Valley: University Science Books.
Uhlenbrock, S., Wegner, R. \& Krebs, B. (1996). J. Chem. Soc. Dalton Trans. pp. 3731-3736.
Ülkü, D., Arıcı, C., Tahir, M. N., Atakol, O. \& Taştekin, M. (1998). Anal. Sci. 14, 455-456.
Zelenák, V., Györyova, K., Cisarova, I. \& Loub, Z. (1996). Acta Cryst. C52, 808-810.

Acta Cryst. (1999). C55, 925-928

\{[μ-Bis(salicylidene)-1,3-propane-diaminato](3-methylpyridine)copper(II)\}diiodozinc(II) \dagger

Filiz Ercan, ${ }^{a}$ Cengiz Arici, ${ }^{a}$ Abdülkadir Akay, ${ }^{b}$ Orhan Atakol ${ }^{b}$ and Dinçer Ülkü ${ }^{a}$
${ }^{a}$ Department of Physics Engineering, Hacettepe University, Beytepe 06532, Ankara, Turkey, and ${ }^{b}$ Department of Chemistry, Ankara University, Tandogan 06100, Ankara, Turkey.E-mail: dulku@eti.cc.hun.edu.tr

(Received 30 June 1998; accepted 23 February 1999)

Abstract

The title complex, $\left[\mathrm{CuZnI}_{2}\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)\right]$, consists of a doubly oxygen-bridged heteronuclear dimeric complex. The Cu atom has a distorted squarepyramidal environment involving two O atoms and two N atoms of the bis(salicylidene)-1,3-propanediaminate (SALPD ${ }^{2-}$) ligand, and an N atom of the 3-methylpyridine group. The $\mathrm{Cu}-\mathrm{O}$ distances in the coordination plane are 1.973 (3) and 1.974 (2) \AA, and the average $\mathrm{Cu}-\mathrm{N}$ distance is 2.088 (4) \AA. In the bridging plane, the $\mathrm{Cu}-\mathrm{O}-\mathrm{Zn}, \mathrm{O}-\mathrm{Zn}-\mathrm{O}, \mathrm{Zn}-\mathrm{O}-\mathrm{Cu}$ and $\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ angles are $102.5(1), 76.7(1), 102.7(1)$ and $77.9(1)^{\circ}$, respectively. The dihedral angle between the coordination plane around the Cu atom and the 3-methylpyridine group is $88.4(1)^{\circ}$. The $\mathrm{Cu} \cdots \mathrm{Zn}$ distance is 3.1013 (7) \AA.

Comment

Binuclear and trinuclear metal complexes based on Schiff base ligands are of interest because of the magnetic superexchange interactions between the bridged metal ions. These polynuclear complexes have been the subject of considerable interest in our laboratory,

[^0]e.g. $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{ClNO}_{2}\right)_{2}\right]$ (Tahir et al., 1996), $\left[\mathrm{Cu}_{2}-\right.$ $\left(\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{2}\right)_{2}$] (Ülkü, Ercan, Atakol, Ercan \& Gencer, 1997), $\mathrm{Ni}_{3}\left\{(\mathrm{SALPD})\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}\right]\right\}_{2}$ (Ülkü, Ercan, Atakol \& Dinçer, 1997), $\left[\mathrm{Cd}\left\{\mathrm{Ni}(\mathrm{SALPD})\left(\mathrm{CH}_{3}-\right.\right.\right.$ $\left.\left.\mathrm{CO}_{2}\right)\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNO}\right\}_{2}\right]$ (Ülkü, Tahir et al., 1997), $\left[\mathrm{Cu}_{2}-\right.$ $\left.\left(\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{2}\right)_{2}\right]$ (Atakol et al., 1997), $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{13}-\right.\right.$ $\left.\mathrm{NO}_{2}\right)_{2}$] (Ülkü et al., 1998), [$\mathrm{Ni}_{2}\left\{\mathrm{Cu}(\mathrm{SALPD})\left(\mathrm{NO}_{2}\right)_{2}-\right.$ $\left.\left.\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNO}\right]\right\}_{2}\right] \cdot 2\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNO}\right]$ (Tahir et al., 1998), $\left[\mathrm{Mn}\left\{\mathrm{Ni}(\mathrm{SALPD})\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNO}\right\}_{2}\right]\right.$ (Ercan \& Atakol, 1998), $\left[\mathrm{Cd}\left\{\mathrm{Cu}(\mathrm{SALPD})\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right\}_{2}\right] \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ (Ercan et al., 1998) and [$\left.\mathrm{Cu}_{3}\left\{(\mathrm{SALPD})\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right\}_{2}\right]$ $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ (Atakol et al., 1999) [SALPD is N, N^{\prime}-bis-(salicylidene)-1,3-propanediaminate]. The structure and magnetic properties of the doubly oxygen-bridged homonuclear dimeric copper(II) complexes have been reported previously (Kato et al., 1964; Barclay \& Hoskins, 1965; Butcher \& Sinn, 1976; Kato \& Muto, 1988). We report here a new heteronuclear dimeric complex, (I). The magnetic superexchange interactions depend on the immediate environment of the bridge, as well as on the ligand arrangement about the metal atoms.

(I)

The coordination polyhedron around the copper ion in this hetero-dinuclear complex can be described as a square pyramid. The value of τ, which represents the relative amount of trigonality, is equal to 0 in a regular square pyramid; $\tau=(\beta-\alpha) / 60^{\circ}, \alpha$ and β being the two largest angles around the central atom (Addison \& Rao, 1984; Uhlenbrock et al., 1996). The value of τ is 0.036 for the Cu^{11} ion. The copper ion is coordinated in the four equatorial positions by the two N and two O atoms of the SALPD ${ }^{2-}$ ligand. The axial position of this square-pyramidal polyhedron is occupied by an N atom of the 3-methylpyridine group. A minor distortion of the square pyramid is revealed by the bond angles between apical and equatorial donor atoms: $\mathrm{N} 3-\mathrm{Cu}-\mathrm{N} 199.3(2), \mathrm{N} 3-\mathrm{Cu}-\mathrm{N} 297.9(2)$, $\mathrm{N} 3-\mathrm{Cu}-\mathrm{O} 196.9(1)$ and $\mathrm{N} 3-\mathrm{Cu}-\mathrm{O} 293.0(1)^{\circ}$. The average of these bond angles is 6.8° greater than the 90° angle in a regular square pyramid. The $\mathrm{Cu}-$ $\mathrm{O} 1-\mathrm{Zn}-\mathrm{O} 2$ bridging plane is approximately planar. The Cu atom is located 0.2393 (6) \AA from the best coordination plane, involving atoms $\mathrm{N} 1, \mathrm{~N} 2, \mathrm{O} 1$ and O 2 . The bond angles within the bridging plane, $\mathrm{Cu}-$ $\mathrm{O} 2-\mathrm{Zn}$ and $\mathrm{Ol}-\mathrm{Cu}-\mathrm{O} 2$, are $102.7(1)$ and $77.9(1)^{\circ}$,
respectively. The 3-methylpyridine group (N3 and C18C22) and the coordination plane make a dihedral angle of $88.4(1)^{\circ}$. The $\mathrm{Cu}-\mathrm{O} 1-\mathrm{Zn}-\mathrm{O} 2$ bridging plane and the coordination plane around the Cu atom make a dihedral angle of $11.4(4)^{\circ}$. There are reports in the literature that this dihedral angle influences the magnetic properties of the system. The $\mathrm{Cu} \cdots \mathrm{Zn}$ distance [3.1013 (7) \AA] in the bridging plane is rather long for a direct interaction. The six-membered $\mathrm{Cu}-\mathrm{Nl}-\mathrm{C} 8-$ C9-C10-N2 chelate ring has a boat conformation. The distances of the two para-positioned boat atoms, Cu and $\mathrm{C} 9 B$, from the $\mathrm{N} 1 / \mathrm{C} 8 / \mathrm{Cl} 0 / \mathrm{N} 2$ plane are 0.702 (1) and 0.547 (1) \AA, respectively. The C9 boat atom is disordered. For clarity, only one component of the disordered C9 atom is shown in Fig. 1. The atom with suffix A has an occupancy of 0.4 and that with suffix B has an occupancy of 0.6 . A comparision of the dihedral angle (κ) between the bridging plane and the coordination plane around the Cu atom, along with the related distance ranges and bridging angle (φ), can be found in Table 2 for the five dimeric copper complexes recently studied in this laboratory. The bond lengths and angles within the ligands show no unusual values. The magnetic properties are currently under investigation.

Fig. I. PLATON (Spek, 1998) drawing of (I) with the atom-numbering scheme. For clarity, only one component of the disordered C9 atom is shown; the C atom of the other component carries suffix A instead of B. The displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small circles with arbitrary radii.

Experimental

To a solution of N, N^{\prime}-bis(salicylidene)-1,3-propanediamine $(0.282 \mathrm{~g}, 1 \mathrm{mmol})$ in hot ethanol (50 ml), ammonia solution ($10 \mathrm{ml}, 20 \%$) was added and the mixture heated to boiling point. A solution of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.170 \mathrm{~g}, 1 \mathrm{mmol})$ in hot methanol (20 ml) was then added and the resulting mixture set aside. After 3 h , the copper complex was filtered off and dried
at 353 K . This complex ($0.343 \mathrm{~g}, 1 \mathrm{mmol}$) was dissolved in hot dioxane (50 ml) and 3-methylpyridine (0.7 ml) was added, followed by $\mathrm{ZnI}_{2}(0.320 \mathrm{~g}, 1 \mathrm{mmol})$ in hot methanol (20 ml). The resulting mixture was set aside for 4 d and the green crystals which formed were filtered off and dried in air.

Crystal data

$\left[\mathrm{CuZnI}_{2}\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right.$ $\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)$]
$M_{r}=756.18$
Triclinic
$P \overline{1}$
$a=8.9034(12) \AA$
$b=10.0168(11) \AA$
$c=16.7090$ (12) A
$\alpha=73.579(2)^{\circ}$
$\beta=74.837(3)^{\circ}$
$\gamma=65.376(2)^{\circ}$
$V=1281.6(2) \AA^{3}$
$Z=2$
$D_{x}=1.960 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
empirical via ψ scans (Fair, 1990)
$T_{\text {min }}=0.382, T_{\text {max }}=0.432$
4888 measured reflections 4256 independent reflections

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=10.45-18.03^{\circ}$
$\mu=4.20 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Prism
$0.40 \times 0.30 \times 0.20 \mathrm{~mm}$
Green

3672 reflections with
$I>3 \sigma(I)$
$R_{\text {int }}=0.011$
$\theta_{\text {max }}=25.68^{\circ}$
$h=-10 \rightarrow 0$
$k=-12 \rightarrow 10$
$l=-19 \rightarrow 19$
3 standard reflections frequency: 120 min intensity decay: -4.1%

Refinement

Refinement on F
$R=0.032$
$w R=0.039$
$S=0.92$
3672 reflections
288 parameters
H -atom parameters
constrained

$$
\begin{gathered}
w=1 /\left[\sigma F^{2}+(0.02 F)^{2}\right. \\
\quad+0.45] \\
(\Delta / \sigma)_{\max }=0.0006 \\
\Delta \rho_{\max }=0.87 \mathrm{e}^{-3} \\
\Delta \rho_{\min }=-0.15 \mathrm{e}^{-3}
\end{gathered}
$$

Extinction correction: none
Scattering factors from International Tables for X-ray
Crystallography (Vol. IV)
Table 1. Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$

$\mathrm{Cu}-\mathrm{Zn}$	$3.1013(7)$	$\mathrm{O} 1-\mathrm{Cl}$	$1.339(5)$
$\mathrm{I} 1-\mathrm{Zn}$	$2.5381(8)$	$\mathrm{O} 2-\mathrm{Cl} 7$	$1.342(6)$
$\mathrm{I} 2-\mathrm{Zn}$	$2.5337(6)$	$\mathrm{N} 1-\mathrm{C} 7$	$1.274(7)$
$\mathrm{Zn}-\mathrm{Ol}$	$2.005(2)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.483(7)$
$\mathrm{Zn}-\mathrm{O} 2$	$1.997(3)$	$\mathrm{N} 2-\mathrm{C} 10$	$1.489(6)$
$\mathrm{Cu}-\mathrm{O} 1$	$1.973(3)$	$\mathrm{N} 2-\mathrm{C} 11$	$1.274(6)$
$\mathrm{Cu}-\mathrm{O} 2$	$1.974(2)$	$\mathrm{C} 8-\mathrm{C} 9 \mathrm{~A}$	$1.35(1)$
$\mathrm{Cu}-\mathrm{N} 1$	$1.986(4)$	$\mathrm{C} 9 A-\mathrm{C} 9 B$	$1.05(2)$
$\mathrm{Cu}-\mathrm{N} 2$	$1.999(4)$	$\mathrm{C} 9 A-\mathrm{C} 10$	$1.48(2)$
$\mathrm{Cu}-\mathrm{N} 3$	$2.279(5)$	$\mathrm{C} 9 B-\mathrm{C} 10$	$1.48(1)$
$\mathrm{I}-\mathrm{Zn}-\mathrm{I} 2$	$117.28(2)$	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$116.7(5)$
$\mathrm{I} 1-\mathrm{Zn}-\mathrm{O} 1$	$111.9(1)$	$\mathrm{Cu}-\mathrm{N} 2-\mathrm{C} 10$	$121.7(3)$
$\mathrm{I}-\mathrm{Zn}-\mathrm{O} 2$	$110.9(1)$	$\mathrm{Cu}-\mathrm{N} 2-\mathrm{C} 11$	$123.6(3)$
$\mathrm{I} 2-\mathrm{Zn}-\mathrm{O} 1$	$114.4(1)$	$\mathrm{C} 10-\mathrm{N} 2-\mathrm{Cl1}$	$114.7(4)$
$\mathrm{I} 2-\mathrm{Zn}-\mathrm{O} 2$	$119.0(1)$	$\mathrm{Cu}-\mathrm{N} 3-\mathrm{C} 18$	$125.1(3)$
$\mathrm{O} 1-\mathrm{Zn}-\mathrm{O} 2$	$76.7(1)$	$\mathrm{Cu}-\mathrm{N} 3-\mathrm{C} 22$	$118.0(4)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 2$	$77.9(1)$	$\mathrm{C} 18-\mathrm{N} 3-\mathrm{C} 22$	$116.9(5)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 1$	$90.3(2)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$119.8(3)$

$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 2$	$161.8(2)$	$\mathrm{O} 1-\mathrm{Cl}-\mathrm{C} 6$	$121.0(4)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 3$	$96.9(1)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$	$129.5(4)$
$\mathrm{O} 2-\mathrm{Cu}-\mathrm{N} 1$	$163.9(2)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9 A$	$115.8(7)$
$\mathrm{O} 2-\mathrm{Cu}-\mathrm{N} 2$	$90.6(1)$	$\mathrm{N} 1-\mathrm{C}-\mathrm{C} 9 B$	$123.4(7)$
$\mathrm{O} 2-\mathrm{Cu}-\mathrm{N} 3$	$93.0(1)$	$\mathrm{C} 8-\mathrm{C} 9 A-\mathrm{C} 9 B$	$67(1)$
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 2$	$97.8(2)$	$\mathrm{C} 8-\mathrm{C} 9 A-\mathrm{C} 10$	$122(1)$
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 3$	$99.3(2)$	$\mathrm{C} 9 B-\mathrm{C} 9 A-\mathrm{C} 10$	$70(1)$
$\mathrm{N} 2-\mathrm{Cu}-\mathrm{N} 3$	$97.9(2)$	$\mathrm{C} 8-\mathrm{C} 9 B-\mathrm{C} 9 \mathrm{~A}$	$68(1)$
$\mathrm{Zn}-\mathrm{Ol}-\mathrm{Cu}$	$102.5(1)$	$\mathrm{C} 8-\mathrm{C} 9 B-\mathrm{C} 10$	$122(1)$
$\mathrm{Zn}-\mathrm{Ol}-\mathrm{C} 1$	$127.3(2)$	$\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 9 A$	$115.9(6)$
$\mathrm{Cu}-\mathrm{O} 1-\mathrm{C} 1$	$130.1(2)$	$\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 9 B$	$114.1(5)$
$\mathrm{Zn}-\mathrm{O} 2-\mathrm{Cu}$	$102.7(1)$	$\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 12$	$128.5(4)$
$\mathrm{Zn}-\mathrm{O} 2-\mathrm{C} 17$	$128.9(2)$	$\mathrm{O} 2-\mathrm{C} 17-\mathrm{C} 12$	$120.4(3)$
$\mathrm{Cu}-\mathrm{O} 2-\mathrm{C} 17$	$128.2(2)$	$\mathrm{O} 2-\mathrm{C} 17-\mathrm{Cl6}$	$120.4(4)$
$\mathrm{Cu}-\mathrm{N} 1-\mathrm{C} 7$	$124.5(3)$	$\mathrm{N} 3-\mathrm{C} 18-\mathrm{C} 19$	$122.9(5)$
$\mathrm{Cu}-\mathrm{N} 1-\mathrm{C} 8$	$118.8(4)$	$\mathrm{N} 3-\mathrm{C} 22-\mathrm{C} 21$	$124.3(5)$

Table 2. Structural data and bridging (φ) and dihedral (κ) angles $\left(\AA,{ }^{\circ}\right)$ for five homo- and hetero-dinuclear $C u$ complexes

Complex	$\mathrm{Cu}-\mathrm{O}$ bridge		$\mathrm{Cu} \cdots M(\mathrm{Cu}, \mathrm{Zn})$	φ
(I)	$1.941(5)-1.950(4)$	$2.994(2)$	$100.6(2)$	κ
(II)	$1.930(1)-1.982(9)$	$3.073(2)$	$103.5(4)$	$11.3(8)$
(III)	$1.885(3)-1.976(3)$	$3.021(2)$	$102.8(1)$	$2.9(9)-8.0(3)$
(IV)	$1.938(3)-1.955(3)$	$3.047(6)$	$103.4(1)$	$12.7(2)$
(V)	$1.973(3)-1.974(2)$	$3.1013(7)$	$102.5(1)-$	$11.4(4)$
				$102.7(1)$

Notes: (I) is $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{ClNO}_{2}\right)_{2}\right]$ (Tahir et al., 1996); (II) is [$\mathrm{Cu}_{2}-$ $\left(\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{2}\right)_{2}$] (Ülkü, Ercan, Atakol, Ercan \& Gencer, 1997); (III) is $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{2}\right)_{2}\right]$ (Atakol et al., 1997); (IV) is $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{13}-\right.\right.$ $\left.\left.\mathrm{NO}_{2}\right)_{2}\right]$ (Ükü et al., 1998); (V) is $\left[\mathrm{Cu}\left\{\mathrm{Zn}\left(\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{I}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}\right)\right\}\right]$ (title compound).
Atoms C9A and C9B were refined isotropically with their H atoms ignored. H atoms were placed geometrically $0.95 \AA$ from their parent C atoms and a riding model was used with $U_{\text {iso }}(\mathrm{H})=1.3 U_{\text {eq }}(\mathrm{C})$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994). Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: MolEN. Program(s) used to refine structure: MolEN. Molecular graphics: PLATON (Spek, 1998). Software used to prepare material for publication: MolEN.

The authors wish to acknowledge the purchase of the CAD-4 diffractometer under Grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1157). Services for accessing these data are described at the back of the journal.

References

Addison, A. W. \& Rao, N. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.
Atakol, O., Anıı, C., Ercan, F. \& Ülkü, D. (1999). Acta Cryst. C55, 511-513.
Atakol, O., Ercan, F., Ülkü, D. \& Yılmaz, N. (1997). Anal. Sci. 13, 1051-1052.
Barclay, G. A. \& Hoskins, B. F. (1965). J. Chem. Soc. pp. 1979-1991.
Butcher, R. J. \& Sinn, E. (1976). Inorg. Chem. 15, 1604-1608.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
Ercan, F. \& Atakol, O. (1998). Acta Cryst. C54, 1268-1270.
Ercan, F., Ülkü, D., Atakol, O. \& Dinçer, F. N. (1998). Acta Cryst. C54, 1787-1790.

Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands. Kato, M., Jonassen, H. B. \& Fanning, J. (1964). Chem. Rev. pp. 99128.

Kato, M. \& Muto, Y. (1988). Coord. Chem. Rev. 92, 45-83.
Spek, A. L. (1998). PLATON. Molecular Geometry Program. University of Utrecht, The Netherlands.
Tahir, M. N., Ülkü, D., Atakol, O. \& Akay, A. (1996). Acta Cryst. C52, 2676-2678.
Tahir, M. N., Ülkü, D., Atakol, O. \& Çakırer, O. (1998). Acta Cryst. C54, 468-470.
Uhlenbrock, S., Wegner, R. \& Krebs, B. (1996). J. Chem. Soc. Dalton Trans. pp. 3731-3736.
Ülkü, D., Arıcı, C., Tahir, M. N., Atakol, O. \& Tastekin, M. (1998). Anal. Sci. 14, 455-456.
Ülkü, D., Ercan, F., Atakol, O. \& Dinçer, F. N. (1997). Acta Cryst. C53, 1056-1057.
Ülkü, D., Ercan, F., Atakol, O., Ercan, I. \& Gencer, A. (1997). Acta Cryst. C53. 179-181.
Ülkü, D., Tahir, M. N., Atakol, O. \& Nazır, H. (1997). Acta Cryst. C53, 872-874.

Acta Cryst. (1999). C55, 928-930

\{[μ-Bis(salicylidene)-1,3-propane-diaminato]bis(3,5-dimethylpyridine)nickel(II) $\}$ diiodozinc(II) \dagger

Cengiz Arici, ${ }^{a}$ Filiz Ercan, ${ }^{a}$ Orhan Atakol, ${ }^{b}$ Abdülkadir Akay ${ }^{b}$ and Dinçer Ülkü ${ }^{a}$
${ }^{a}$ Department of Engineering Physics, Hacettepe University, Beytepe 06532, Ankara, Turkey, and ${ }^{b}$ Department of Chemistry, Faculty of Science, University of Ankara, Besevler 06100, Ankara, Turkey. E-mail: dulku@eti.cc.hun. edu.tr

(Received 1 September 1998; accepted 15 February 1999)

Abstract

The structure of the title compound, $\left[\mathrm{NiZnI}_{2}\left(\mathrm{C}_{17} \mathrm{H}_{16}{ }^{-}\right.\right.$ $\left.\mathrm{N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}\right)_{2}$], consists of doubly oxygen-bridged heteronuclear dimeric complexes. The compound is of interest because of the magnetic superexchange interactions that occur between doubly oxygen-bridged metal ions. The Ni atom has an irregular octahedral environment involving two O and two N atoms from the bis(salicylidene)-1,3-propanediaminate ligand in the equatorial plane and the N atoms from the two 3,5dimethylpyridine groups in the apical positions. The coordination around the Zn atom is distorted tetrahedral,

^[\dagger Systematic name: bis(3,5-dimethylpyridine)-1 $\kappa^{2} N$-diiodo- $2 \kappa^{2} I-\mu$ -$\left\{2,2^{\prime}\right.$-[1,3-propanediylbis(nitrilomethylidene) $]$ diphenolato $\}-1 \kappa^{4} O, N,-$ $N^{\prime}, O^{\prime}: 2 \kappa^{2} O, O^{\prime}$-nickel(II)zinc(II).]

with an average $\mathrm{Zn}-\mathrm{O}$ distance of 2.001 (2) \AA and an average $\mathrm{Zn}-\mathrm{I}$ distance of 2.5499 (5) \AA. In the bridged plane, the $\mathrm{Ni}-\mathrm{Ol}-\mathrm{Zn}, \mathrm{O} 1-\mathrm{Zn}-\mathrm{O} 2, \mathrm{Zn}-\mathrm{O} 2-\mathrm{Ni}$ and $\mathrm{O} 2-\mathrm{Ni}-\mathrm{Ol}$ angles are $98.82(9), 81.2(1), 99.8(1)$ and $79.6(1)^{\circ}$, respectively. The $\mathrm{Ni} \cdots \mathrm{Zn}$ distance is 3.0753 (7) \AA.

Comment

The syntheses and structures of oxygen-bridged binuclear and trinuclear linear homo- or heterometal complexes based on Schiff base ligands, such as $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{ClNO}_{2}\right)_{2}\right]$ (Tahir et al., 1996), $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{14} \mathrm{H}_{11}-\right.\right.$ $\left.\mathrm{NO}_{2}\right)_{2}$] (Ülkü, Ercan, Atakol, Ercan \& Gencer, 1997), $\left[\mathrm{Cd}\left\{\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)(\mathrm{SALPD}) \mathrm{Ni}\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNO}\right]\right\}_{2}\right]$ (Ülkü, Tahir et al., 1997), $\left[\mathrm{Ni}_{3}(\mathrm{SALPD})_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{2}\left\{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}\right\}_{2}\right]$ (Ülkü, Ercan, Atakol \& Dinçer, 1997), $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{13^{-}}\right.\right.$ $\left.\mathrm{NO}_{2}\right)_{2}$] (Atakol et al., 1997), $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{2}\right)_{2}\right]$ (Ülkü et al., 1998) and $\left[\mathrm{CuNi}_{2}\left(\mathrm{NO}_{2}\right)_{2}(\mathrm{SALPD})_{2}\left\{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\right.\right.$ $\left.\mathrm{NO}\}_{2}\right] \cdot 2\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNO}$ (Tahir et al., 1998) [SALPD is N, N^{\prime}-bis(salicylidene)-1,3-propanediaminate], have been the subject of considerable interest in this laboratory due to the magnetic superexchange interactions which occur between their bridged metal ions. Structural details of doubly oxygen-bridged homonuclear dimeric copper(II) complexes have been reported previously (Kato et al., 1964; Barclay \& Hoskins, 1965; Butcher \& Sinn, 1976; Kato \& Muto, 1988). We describe here the structure of a new heteronuclear dimeric complex, $\left[\mathrm{NiZnI}_{2}\right.$ (SALPD)$\left.\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}\right)_{2}\right]$, (I).

The magnetic properties of (I) are currently under investigation. Magnetic superexchange interactions depend on the immediate environment of the bridge, as well as on the ligand arrangement about the metal atoms. The coordination around the nickel ion in the title hetero-dinuclear complex is an irregular octahedron involving two bridging O and two N atoms from the SALPD ${ }^{2-}$ ligand in the equatorial plane. In the axial positions of this irregular octahedron lie atoms N3 and N4 from the two 3,5-dimethylpyridine groups. The bond angles around the central Ni ion are in the range $79.6(1)(\mathrm{Ol}-\mathrm{Ni}-\mathrm{O} 2)$ to $98.7(1)^{\circ}(\mathrm{N} 1-\mathrm{Ni}-\mathrm{N} 2)$. The Ni atom is located -0.0087 (5) \AA from the coordination plane ($\mathrm{O} 1, \mathrm{O} 2, \mathrm{~N} 1, \mathrm{~N} 2$). This coordination plane and the bridging plane around the Ni atom $(\mathrm{Ni}, \mathrm{O} 1, \mathrm{Zn}, \mathrm{O} 2)$

[^0]: \dagger Alternative name: diiodo- $2 \kappa^{2} I$-(3-methylpyridine- $1 \kappa N$) $-\mu$ - $\left\{2,2^{\prime}\right.$ - [1,3propanediylbis(nitrilomethylidyne)]diphenolato $\}-1 \kappa^{4} O, N, N^{\prime}, O^{\prime}: 2 \kappa^{2}$ O, O^{\prime}-copper(II)zinc(II).

